Inflated Cone Experiment for High-Throughput Characterization of Time-Dependent Polymer Membranes

Author:

Bugra Ozdemir Veli1,Kwok Kawai1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816

Abstract

Abstract Long-term behavior of polymer membranes in the nonlinear regime is probed by strain histories under various stress levels. Current characterization methods for polymer membranes impose a uniform stress field and hence require a series of long-duration tests to be conducted, which poses a significant experimental challenge. Here, we present the inflated cone method to generate a continuous spectrum of strain histories under various stresses in a single experiment. By imposing a known stress gradient and utilizing a full-field strain measurement technique, the inflated cone method provides a high-throughput approach for extracting time-dependent data of polymer membranes. The method is suitable for studying nonlinear time-dependent deformations under a biaxial stress state. The stress range and ratio can be easily modulated by cone geometry design. We demonstrate the utility of the method through creep-recovery tests carried out on a polyethylene thin film. The proposed experimental method is highly beneficial for the development of nonlinear viscoelastic and viscoplastic models.

Funder

Goddard Space Flight Center

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Direct stress computations in arbitrarily shaped thin shells and elliptic bulge tests;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3