Thermal and Hydraulic Performances of Porous Microchannel Heat Sink Using Nanofluids

Author:

Ahmed Zahir U.1,Raihan Md. Roni1,Ghaffari Omidreza2,Ikhlaq Muhammad3

Affiliation:

1. Department of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh

2. Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, PQ J1K 0A5, Canada

3. School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK

Abstract

Abstract Microchannel heat sink is an effective method in compact and faster heat transfer applications. This paper numerically investigates thermal and hydraulic characteristics of a porous microchannel heat sink (PMHS) using various nanofluids. The effect of porosity (γ = 0.32–0.60), inlet velocity (win = 0.5–1.5 m/s), and nanoparticle concentration (ϕ=0.0025 – 0.05) on thermal-hydraulic performance is systematically examined. The result shows a significant temperature increase (40 °C) of the coolant in the porous zone. The pressure drop reduces by 35% for γ = 0.32 compared to the non-porous counterpart, and this reduction of pressure significantly continues when γ further increases. The pressure drop with win is linear for PMHS with nanofluids, and the change in pressure drop is steeper for nanofluids compared to their base fluids. The average heat transfer coefficient increases about 2.5 times for PMHS, and a further increase of 6% in h¯ is predicted with the addition of nanoparticles. The average Nusselt number Nu¯ increases nonlinearly with Re for PMHS. The friction factor reduces by 50% when γ increases from 0.32 to 0.60, and the effect of nanofluid on friction factor is insignificant beyond the mass flowrate of 0.0004 kg/s. Whilst Cu and CuO nanoparticles help to dissipate the larger amount of heat from the microchannel, Al2O3 nanoparticle appears to have a detrimental effect on heat transfer. The thermal-hydraulic performance factor strongly depends on the nanoparticles, and it slightly decreases with the mass flowrate. The increase of nanoparticle concentration, in general, enhances both h¯ and ΔP linearly for the range considered.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3