The Computer Simulation and Experimental Analysis of Chip Monitoring for Deep Hole Drilling

Author:

Chin Jih-Hua1,Wu Jang-Shyong1,Young Rouh-Song1

Affiliation:

1. Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan, R. O. C.

Abstract

Chip congestion is a long time bottleneck in deep hole drilling. This paper addresses the problem of chip state monitoring in single-edge deep hole drilling by computer simulation and experimental analysis. Two phenomenological models were proposed to interpret the physics of chip discharging in normal and congested states, respectively. Length and diameter of the chip are chosen to represent the geometric features of the chip, and the formation of a chip signal is discussed. Based on the two models different types of chips are used to simulate the monitoring process. Computer simulation shows that the normal chip discharging in a real drilling process can be interpreted by the proposed slug flow model. Also, the experiments with cylindrical form chips confirms model II proposed for a congested chip state in which the diametral effect develops due to chip congestion. The experimental analyses also find out the dependence of pressure signals on the various parameters of chips as well as the cutting process.

Publisher

ASME International

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3