Learning Design Rules With Explicit Termination Conditions to Enable Efficient Automated Design

Author:

Rawson Kevin1,Stahovich Thomas F.1

Affiliation:

1. Department of Mechanical Engineering, University of California, Riverside, CA 92521

Abstract

We present a two-step technique for learning reusable design procedures from observations of a designer in action. This technique is intended for the domain of parametric design problems in which the designer iteratively adjusts the parameters of a design so as to satisfy the design requirements. In the first step of the two-step learning process, decision tree learning is used to infer rules that predict which design parameter the designer is likely to change for any particular state of an evolving design. In the second step, decision tree learning is again used, but this time to learn explicit termination conditions for the rules learned in the first step. The termination conditions are used to predict how large of a parameter change should be made when a rule is applied. The learned rules and termination conditions can be used to automatically solve new design problems with a minimum of human intervention. Experiments with this technique suggest that it can reproduce the decision making process observed from the designer, and it is considerably more efficient than the previous technique, which was incapable of learning explicit rule termination conditions. In particular, the rule termination conditions allow the new program to automatically solve design problems with far fewer iterations than previously required.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference38 articles.

1. Enhancing Virtual Product Representations for Advanced Design Repository Systems;Bohm;ASME J. Comput. Inf. Sci. Eng.

2. Product Design Reuse With Parts Libraries and an Engineering Semantic Web for Small- and Medium-Sized Manufacturing Enterprises;Jin;Int. J. Adv. Manuf. Technol.

3. A Case-Based Design Aid for Architectural Design;Domeshek

4. Kritik: An Early Case-Based Design System;Goel

5. CADET: A Case-Based Synthesis Tool for Engineering Design;Sycara;International J. of Expert Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient probabilistic grammar induction for design;Artificial Intelligence for Engineering Design, Analysis and Manufacturing;2018-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3