Effect of Unsteady Wake With Trailing Edge Coolant Ejection on Detailed Heat Transfer Coefficient Distributions for a Gas Turbine Blade

Author:

Du H.1,Ekkad S.1,Han J.-C.1

Affiliation:

1. Turbine Heat Transfer Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123

Abstract

Detailed heat transfer coefficient distributions on a turbine blade under the combined effects of trailing edge jets and unsteady wakes at various free-stream conditions are presented using a transient liquid crystal image method. The exit Reynolds number based on the blade axial chord is varied from 5.3 × 105 to 7.6 × 105 for a five blade linear cascade in a low speed wind tunnel. Unsteady wakes are produced using a spoked wheel-type wake generator upstream of the linear cascade. Upstream trailing edge jets are simulated by air ejection from holes located on the hollow spokes of the wake generator. The mass flux ratio of the jets to free-stream is varied from 0.0 to 1.0. Results show that the surface heat transfer coefficient increases with an increase in Reynolds number and also increases with the addition of unsteady wakes. Adding grid generated turbulence to the unsteady wake further enhances the blade surface heat transfer coefficients. The trailing edge jets compensate the defect in the velocity profile caused by the unsteady passing wakes and give an increase in free-stream velocity and produce a more uniformly disturbed turbulence intensity profile. The net effect is to increase both the front parts of blade suction and pressure surface heat transfer. However, the jet effect diminishes in and after the transition regions on suction surface, or far away from the leading edge on pressure surface.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3