Condition Monitoring of Nuclear Equipment-Piping Systems Subjected to Normal Operating Loads Using Deep Neural Networks
Author:
Affiliation:
1. Department of CCEE, North Carolina State University, Raleigh, NC 27695
2. WDP & Associates, Manassas, VA 20110
3. Center for Nuclear Energy Facilities and Structures, North Carolina State University, Raleigh, NC 27695
Abstract
Funder
Advanced Research Projects Agency
Publisher
ASME International
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Link
https://asmedigitalcollection.asme.org/pressurevesseltech/article-pdf/145/4/041901/7015667/pvt_145_04_041901.pdf
Reference50 articles.
1. Digital-Twin-Based Improvements to Diagnosis, Prognosis, Strategy Assessment, and Discrepancy Checking in a Nearly Autonomous Management and Control System;Ann. Nucl. Energy,2022
2. Conceptual Design of Autonomous Emergency Operation System for Nuclear Power Plants and Its Prototype;Nucl. Eng. Technol.,2020
3. A Future With Machine Learning: Review of Condition Assessment of Structures and Mechanical Systems in Nuclear Facilities;Energies,2023
4. Wu, P. C., 1989, “ Erosion/Corrosion-Induced Pipe Wall Thinning in U.S. Nuclear Power Plants,” Report No. NUREG-1344, 6152848.
5. On Piping Vibration Screening Criteria;ASME J. Pressure Vessel Technol.,2020
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Characterizing the cyclic behavior of piping T-joint connections;International Journal of Pressure Vessels and Piping;2024-10
2. Deep learning application for monitoring degradation in nuclear safety systems;European Journal of Environmental and Civil Engineering;2024-09
3. Optimization of passive modular molten salt microreactor geometric perturbations using machine learning;Nuclear Engineering and Design;2024-08
4. A comparative study on deep learning models for condition monitoring of advanced reactor piping systems;Mechanical Systems and Signal Processing;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3