Straight-Build Assembly Optimization: A Method to Minimize Stage-by-Stage Eccentricity Error in the Assembly of Axisymmetric Rigid Components (Two-Dimensional Case Study)

Author:

Hussain T.,Yang Z.1,Popov A. A.1,McWilliam S.1

Affiliation:

1. Materials, Mechanics and Structures Research Division, University of Nottingham, Nottingham, NG7 2RD, UK

Abstract

For assembly of rotating machines, such as machining tools, industrial turbomachinery, or aircraft gas turbine engines, parts need to be assembled in order to avoid internal bending of the geometric axis of the rotor to meet functional and vibration requirements. Straight-build assembly optimization is a way of joining parts together in order to have a straight line between the centers of the components. Straight-build assembly is achieved by minimizing eccentricity error stage-by-stage in the assembly. To achieve minimal eccentricity, this paper proposes three assembly procedures: (i) table-axis-build assembly by minimizing the distances from the centers of components to table axis; (ii) minimization of the position error between actual and nominal centers of the component; and (iii) central-axis-build assembly by minimizing the distances from the centers of components to a central axis. To test the assembly procedures, two typical assembly examples are considered using four identical rectangular components and four nonidentical rectangular components, respectively. Monte Carlo simulations are used to analyze the tolerance build-up, based on normally distributed random variables. The results show that assembly variations can be reduced significantly by selecting best relative orientation between mating parts. The results also show that procedures (i) and (ii) have the most potential to minimize the error build-up in the straight build of an assembly. For these procedures, the variation is reduced by 45% and 40% for identical and nonidentical components, respectively, compared to direct-build assembly. Procedure (iii) provides better performance than direct-build assembly for identical components assembly, while it gives smaller variation at the first two stages and larger variation at the third stage for nonidentical components assembly. This procedure could be used in an assembly with limited stages.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3