Failure Prognosis of Complex Equipment With Multistream Deep Recurrent Neural Network

Author:

Su Yonghe1,Tao Fei1,Jin Jian2,Wang Tian1,Wang Qingguo3,Wang Lei1

Affiliation:

1. School of Automation Science & Electrical Engineering, Beihang University, Beijing 100191, China

2. Department of Information Management, Beijing Normal University, Beijing 100875, China

3. Institute of Intelligent System, University of Johannesburg, Johannesburg, Gauteng ZA 2000, South Africa

Abstract

Abstract The failure prognosis is crucial for industrial equipment in prognostics and health management field. The vibration signal is the commonly used data for failure prognosis. The conventional prognostic approaches have limitations to handle the features extracted from the vibration signal because of the large data quantity, complex feature relations, and limited degeneration mechanisms. In this paper, a deep learning-based approach is proposed to predict the failure of the complex equipment. To supply plenty of features, three different domain features are extracted from vibration signals. Next, these features are preprocessed and reconstructed by arctangent normalization and data stream, respectively. Finally, a deep neural network, namely, multistream deep recurrent neural network (MS-DRNN) is built to fuse these features for failure target. The presented deep neural network is hybrid, involving recurrent layer, fusion layer, fully connected layer, and linear layer. To benchmark the proposed approach, several prognosis approaches are evaluated with the testing data from six large bearing datasets. Simulation results demonstrate that the prediction performance of the MS-DRNN-based approach is effective and reliable.

Funder

Industrial Internet Innovation Development Project

National Key Research and Development Project

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3