Residual Stress Reduction and Fatigue Strength Improvement by Controlling Welding Pass Sequences

Author:

Mochizuki Masahito1,Hattori Toshio2,Nakakado Kimiaki3

Affiliation:

1. Department of Manufacturing Science, Osaka University, Suita, Osaka 565-0871, Japan

2. Hitachi, Ltd., Tsuchiura, Ibaraki 300-0013, Japan

3. Hitachi Construction Machinery Co., Ltd., Tsuchiura, Ibaraki 300-0013, Japan

Abstract

The effects of residual stress on fatigue strength at a weld toe in a multi-pass fillet weld joint were evaluated. The residual stresses in the weld joints were varied by controlling the sequence of welding passes. The residual stress at the weld toe was 80 MPa in the specimen whose last welding pass was on the main plate side, but it was 170 MPa in the specimen whose last pass was on the attachment side. The fatigue strength was nearly the same at high stress amplitude for both specimens, but the fatigue strength of the specimen whose last weld pass on the main plate was higher than that of the other specimen at low stress amplitude. This difference is due to the magnitude of the initial residual stress and the relaxation of the residual stress under fatigue cycling. The effects of the residual stress were shown in a modified Goodman diagram, in which residual stress is treated as a mean stress. [S0094-4289(00)01701-1]

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3