A Method to Use Kriging With Large Sets of Control Points to Morph Finite Element Models of the Human Body

Author:

Janák Tomáš1,Lafon Yoann1,Petit Philippe2,Beillas Philippe1

Affiliation:

1. Univ Lyon, Université Claude Bernard Lyon 1, Université Gustave Eiffel, LBMC UMR_T9406, Lyon, F69622, France

2. LAB PSA—Renault, Nanterre, 132, rue des Suisses, Nanterre 92000, France

Abstract

Abstract As developing finite element (FE) human body models for automotive impact is a time-consuming process, morphing using interpolation methods such as kriging has often been used to rapidly generate models of different shapes and sizes. Kriging can be computationally expensive when many control points (CPs) are used, i.e., for very detailed target geometry (e.g., shape of bones and skin). It can also lead to element quality issues (up to inverted elements) preventing the use of the morphed models for finite element simulation. This paper presents a workflow combining iterative subsampling and spatial subdivision methodology that effectively reduces the computational costs and allows for the generation of usable models through kriging with hundreds of thousands of control points. As subdivision introduces discontinuities in the interpolation function that can cause distortion of elements on the boundaries of individual subdivision areas, algorithms for smoothing the interpolation over those boundaries are proposed and compared. Those techniques and their combinations were tested and evaluated in a scenario of mass change on the detailed 50th percentile male model of the global human body models consortium (GHBMC): the model, which has body mass index (BMI) 25.34, was morphed toward a statistical surface model of a person with body mass index 20, 22.7 and 35. 234 777 control points were used to successfully morph the model in less than 15 min on an office PC. Open source implementation is provided.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference49 articles.

1. Pedestrian Test Protocol v8.5;EuroNCAP,2018

2. Development of a Full Body CAD Dataset for Computational Modeling: A Multi-Modality Approach;Ann. Biomed. Eng.,2011

3. Development of Next Generation Human FE Model Capable of Organ Injury Prediction,2009

4. Driver Obesity and the Risk of Fatal Injury During Traffic Collisions;Emer. Med. J.,2014

5. Effects of Obesity on Seat Belt Fit;Traffic Injury Prev.,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3