Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton

Author:

Zhou Xianlian1,Chen Xinyu2

Affiliation:

1. Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102

2. Division of Computational Medicine and Biology, CFD Research Corporation, Huntsville, AL 35806

Abstract

Abstract In this article, we present an integrated human-in-the-loop simulation paradigm for the design and evaluation of a lower extremity exoskeleton that is elastically strapped onto human lower limbs. The exoskeleton has three rotational DOFs on each side and weighs 23 kg. Two torque compensation controllers of the exoskeleton are introduced, aiming to minimize interference and maximize assistance, respectively. Their effects on the wearer's biomechanical loadings are studied with a running motion and predicted ground reaction forces (GRFs). It is found that the added weight of the passive exoskeleton substantially increases the wearer's musculoskeletal loadings. The maximizing assistance controller reduces the knee joint torque by 31% when compared with the normal running (without exoskeleton) and by 50% when compared with the passive exoskeleton case. When compared with the normal running, this controller also reduces the hip flexion and extension torques by 31% and 38%, respectively. As a result, the peak activations of the biceps short head, gluteus maximus, and rectus femoris muscles are reduced by more than a half. Nonetheless, the axial knee joint reaction force increases for all exoskeleton cases due to the added weight and higher ground reaction forces. In summary, the results provide sound evidence of the efficacy of the proposed controllers on reducing the wearer's musculoskeletal loadings. And it is shown that the human-in-the-loop simulation paradigm presented here can be used for virtual design and evaluation of powered exoskeletons and pave the way for building optimized exoskeleton prototypes for experimental evaluation.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3