Directed Energy Deposition With Coaxial Wire-Powder Feeding: Melt Pool Temperature and Microstructure

Author:

Zhou Yue1,Ning Fuda1

Affiliation:

1. State University of New York at Binghamton Department of Systems Science and Industrial Engineering, , Binghamton, NY 13902

Abstract

Abstract In this work, we developed a new additive manufacturing paradigm, coaxial wire–powder-fed directed energy deposition (CWP-DED), to enable the fabrication of metals or composites with high manufacturing flexibility and efficiency. Herein, stainless steel (SS) 316L was selected as a representative material to validate the feasibility of CWP-DED process. Effects of feed rates on the melt pool temperature during the CWP-DED process were investigated using experimental and analytical approaches. Thermal contributions of fed wire and powders to the melt pool were involved in the analytical model to predict the melt pool temperature. The experimental results from thermal imaging were also obtained for validation. Besides, we uncovered the evolution of solidification morphology and crystallographic texture with different combinations of wire and powder feed rates. Finally, the microhardness and tensile performance of different as-built parts were tested. The results showed that the powder feed rate played a more dominant role in determining the melt pool temperature than the wire feed rate. Melt pool temperature experienced an initial increase and then decrease with the powder feed rate. A fine microstructure was achieved at a low powder feed rate, producing higher microhardness and larger tensile strength. This paper revealed the relations among process, thermal variation, and microstructure of as-built metallic parts to well understand this novel DED process.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3