Pulsatile Albumin Transport in Large Arteries: A Numerical Simulation Study

Author:

Rappitsch G.1,Perktold K.1

Affiliation:

1. Institute of Mathematics, Technical University Graz, Graz, Austria

Abstract

Albumin transport in a stenosed artery configuration is analyzed numerically under steady and pulsatile flow conditions. The flow dynamics is described applying the incompressible Navier-Stokes equations for Newtonian fluids, the mass transport is modelled using the convection diffusion equation. The boundary conditions describing the solute wall flux take into account the concept of endothelial resistance to albumin flux by means of a shear dependent permeability model based on experimental data. The study concentrates on the influence of steady and pulsatile flow patterns and of regional variations in vascular geometry on the solute wall flux and on the ratio of endothelial resistance to concentration boundary layer resistance. The numerical solution of the Navier-Stokes equations and of the transport equation applies the finite element method where stability of the convection dominated transport process is achieved by using an upwind procedure and a special subelement technique. Numerical simulations are carried out for albumin transport in a stenosed artery segment with 75 percent area reduction representing a late stage in the progression of an atherosclerotic disease. It is shown that albumin wall flux varies significantly along the arterial section, is strongly dependent upon the different flow regimes and varies considerably during a cardiac cycle. The comparison of steady results and pulsatile results shows differences up to 30 percent between time-averaged flux and steady flux in the separated flow region downstream the stenosis.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Partitioned schemes for the blood solute dynamics model by the variational multiscale method;Applied Numerical Mathematics;2024-04

2. References;Computational Fluid Dynamics;2024

3. Some Advanced Topics in CFD;Computational Fluid Dynamics;2024

4. Decoupled modified characteristics variational multiscale method for solving the blood solute dynamics model;Mathematics and Computers in Simulation;2023-09

5. Applications of porous media in biological transport modeling;Modeling of Mass Transport Processes in Biological Media;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3