Design Variety Measurement Using Sharma–Mittal Entropy

Author:

Ahmed Faez1,Ramachandran Sharath Kumar2,Fuge Mark3,Hunter Sam4,Miller Scarlett2

Affiliation:

1. Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208

2. School of Engineering Design, Technology and Professional Programs, The Pennsylvania State University, University Park, PA 16802

3. Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

4. Industrial and Organizational Psychology, The Pennsylvania State University, University Park, PA 16802

Abstract

Abstract Design variety metrics measure how much a design space is explored. This article proposes that a generalized class of entropy metrics based on Sharma–Mittal entropy offers advantages over existing methods to measure design variety. We show that an exemplar metric from Sharma–Mittal entropy, namely, the Herfindahl–Hirschman index for design (HHID) has the following desirable advantages over existing metrics: (a) more accuracy: it better aligns with human ratings compared to existing and commonly used tree-based metrics for two new datasets; (b) higher sensitivity: it has higher sensitivity compared to existing methods when distinguishing between the variety of sets; (c) allows efficient optimization: it is a submodular function, which enables one to optimize design variety using a polynomial time greedy algorithm; and (d) generalizes to multiple metrics: many existing metrics can be derived by changing the parameters of this metric, which allows a researcher to fit the metric to better represent variety for new domains. This article also contributes a procedure for comparing metrics used to measure variety via constructing ground truth datasets from pairwise comparisons. Overall, our results shed light on some qualities that good design variety metrics should possess and the nontrivial challenges associated with collecting the data needed to measure those qualities.

Funder

National Science Foundation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some properties of the Sharma–Mittal statistical distribution;Seriya 3: Fizika, Astronomiya;2023-09-20

2. How Diverse Initial Samples Help and Hurt Bayesian Optimizers;Journal of Mechanical Design;2023-08-29

3. Some Properties of the Sharma–Mittal Statistical Distribution;Moscow University Physics Bulletin;2023-08

4. Measurement project interoperability for real-time data gathering systems;Future Generation Computer Systems;2022-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3