Turbulent Hybrid Bearings With Fluid Inertia Effects

Author:

San Andre´s Luis1

Affiliation:

1. Mechanical Engineering Department, Texas A&M University, College Station, Texas 77843

Abstract

High speed hybrid bearings for cryogenic applications demand large levels of external pressurization to provide substantial load capacity. These conditions give rise to large film Reynolds numbers, and thus, cause the fluid flow within the bearing film to be turbulent and dominated by fluid inertia effects both at the recess edges and at the thin film lands. The analysis includes the effect of recess fluid compressibility and a model for the pressure rise within the recess region. Flow turbulence is simulated by friction factors dependent on the local Reynolds numbers and surface conditions. A perturbation method is used to calculate the zeroth and first flow fields and determine the bearing steady-state and dynamic force response. Comparison of results with existing experimental data shows the accuracy of the present full inertial-turbulent analysis. A roughened bearing surface is shown to improve considerably the stability characteristics of hybrid bearings operating at high speeds.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3