Controlling Propulsive Forces in Gait Initiation in Transfemoral Amputees

Author:

van Keeken Helco G.1,Vrieling Aline H.2,Hof At L.3,Halbertsma Jan P. K.2,Schoppen Tanneke2,Postema Klaas2,Otten Bert1

Affiliation:

1. Center for Human Movement Sciences, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands

2. Center for Rehabilitation, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands

3. Center for Human Movement Sciences, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands; Center for Rehabilitation, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands

Abstract

During prosthetic gait initiation, transfemoral (TF) amputees control the spatial and temporal parameters that modulate the propulsive forces, the positions of the center of pressure (CoP), and the center of mass (CoM). Whether their sound leg or the prosthetic leg is leading, the TF amputees reach the same end velocity. We wondered how the CoM velocity build up is influenced by the differences in propulsive components in the legs and how the trajectory of the CoP differs from the CoP trajectory in able bodied (AB) subjects. Seven TF subjects and eight AB subjects were tested on a force plate and on an 8m long walkway. On the force plate, they initiated gait two times with their sound leg and two times with their prosthetic leg. Force measurement data were used to calculate the CoM velocity curves in horizontal and vertical directions. Gait initiated on the walkway was used to determine the leg preference. We hypothesized that because of the differences in propulsive components, the motions of the CoP and the CoM have to be different, as ankle muscles are used to help generate horizontal ground reaction force components. Also, due to the absence of an active ankle function in the prosthetic leg, the vertical CoM velocity during gait initiation may be different when leading with the prosthetic leg compared to when leading with the sound leg. The data showed that whether the TF subjects initiated a gait with their prosthetic leg or with their sound leg, their horizontal end velocity was equal. The subjects compensated the loss of propulsive force under the prosthesis with the sound leg, both when the prosthetic leg was leading and when the sound leg was leading. In the vertical CoM velocity, a tendency for differences between the two conditions was found. When initiating gait with the sound leg, the downward vertical CoM velocity at the end of the gait initiation was higher compared to when leading with the prosthetic leg. Our subjects used a gait initiation strategy that depended mainly on the active ankle function of the sound leg; therefore, they changed the relative durations of the gait initiation anticipatory postural adjustment phase and the step execution phase. Both legs were controlled in one single system of gait propulsion. The shape of the CoP trajectories, the applied forces, and the CoM velocity curves are described in this paper.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3