Numerical Study of Deterministic Fluxes in Compressor Passages

Author:

Wang Feng1,Carnevale Mauro2,di Mare Luca1

Affiliation:

1. Department of Engineering Science, Oxford Thermofluids Institute, University of Oxford, Oxford OX2 0ES, UK e-mail:

2. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK e-mail:

Abstract

Computational fluid dynamics (CFD) has been widely adopted in the compressor design process, but it remains a challenge to predict the flow details, performance, and stage matching for multistage, high-speed machines accurately. The Reynolds Averaged Navier-Stokes (RANS) simulation with mixing plane for bladerow coupling is still the workhorse in the industry and the unsteady bladerow interaction is discarded. This paper examines these discarded unsteady effects via deterministic fluxes using semi-analytical and unsteady RANS (URANS) calculations. The study starts from a planar duct under periodic perturbations. The study shows that under large perturbations, the mixing plane produces dubious values of flow quantities (e.g., whirl angle). The performance of the mixing plane can be considerably improved by including deterministic fluxes into the mixing plane formulation. This demonstrates the effect of deterministic fluxes at the bladerow interface. Furthermore, the front stages of a 19-blade row compressor are investigated and URANS solutions are compared with RANS mixing plane solutions. The magnitudes of divergence of Reynolds stresses (RS) and deterministic stresses (DS) are compared. The effect of deterministic fluxes is demonstrated on whirl angle and radial profiles of total pressure and so on. The enhanced spanwise mixing due to deterministic fluxes is also observed. The effect of deterministic fluxes is confirmed via the nonlinear harmonic (NLH) method which includes the deterministic fluxes in the mean flow, and the study of multistage compressor shows that unsteady effects, which are quantified by deterministic fluxes, are indispensable to have credible predictions of the flow details and performance of compressor even at its design stage.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3