Effect of Niobium Doping on Electrochemical Properties of Microwave Synthesized Carbon Coated Nanolithium Iron Phosphate for High Rate Underwater Applications

Author:

Kumar A. Srinivas1,Satyavani T. V. S. L.2,Senthilkumar M.2,Subba Rao P. S. V.3

Affiliation:

1. Naval Science and Technological Laboratory, Vigyan Nagar, Visakhapatnam 530027, India e-mail:

2. Naval Science and Technological Laboratory, Vigyan Nagar, Visakhapatnam 530027, India

3. Department of Physics, Andhra University, Visakhapatnam 530003, India

Abstract

Lithium iron phosphate (LiFePO4) for lithium-ion batteries is considered as perfect cathode material for various military applications, especially underwater combat vehicles. For deployment at high rate applications, the low conductivity of LiFePO4 needs to be improved. Cationic substitution of niobium in the native carbon coated LiFePO4 is one of the methods to enhance the conductivity. In the present work, how the niobium doped solid solution could be formed is studied. Nanopowders of LiFePO4/C and Li1−xNbxFePO4/C (x = 0.05, 0.1, 0.15, 0.16) are synthesized from precursors using microwave synthesis. The solid solution formation up to (x = 0.15) Li1−xNbxFePO4/C without impurity phases is confirmed by X-ray diffraction (XRD) pattern and Fourier transform infrared spectroscopic (FTIR) results. Particle distribution is obtained by scanning electron microscope from the synthesized powders. Energy dispersive X-ray spectrometer (EDS) results qualitatively confirmed the presence of niobium. Also, direct current (dc) conductivities are measured using sintered pellets and activation energies are calculated using Arrhenius equation. The dependence of conductivity and activation energy of LiFePO4/C on variation of niobium doping is investigated in this study. CR2032 type coin cells are fabricated with the synthesized materials and subjected to cyclic voltammetry studies, rate capability and cycle life studies. Diffusion coefficients are obtained from electrochemical impedance spectroscopy studies. It is observed that room temperature dc conductivity improved by niobium doping when compared to LiFePO4/C (0.379 × 10−2 S/cm) and is maximum for Li0.9Nb0.1FePO4/C (40.58 × 10−2 S/cm). It is also observed that diffusion coefficient of Li+ in Li0.9Nb0.1FePO4/C (13.306 × 10−9 cm2 s−1) improved by two orders of magnitude in comparison with the pure LiFePO4 (10 − 12 cm2 s−1) and carbon-coated nano LiFePO4/C (0.632 × 10−11 cm2 s−1). Cells with Li0.9Nb0.1FePO4/C are able to deliver useful capacity of around 104 mAh/g at 10 C rate. More than 500 cycles are achieved with Li0.9Nb0.1FePO4/C at 20 C rate.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3