Experimental Validation of the Adaptive Gaussian Process Regression Model Used for Prediction of Stress Intensity Factor as an Alternative to Finite Element Method

Author:

Keprate Arvind1,Chandima Ratnayake R. M.1,Sankararaman Shankar2

Affiliation:

1. Department of Mechanical and Structural Engineering and Material Science, University of Stavanger, Stavanger 4036, Norway e-mail:

2. SGT, Inc., NASA Ames Research Center, Moffett Field, CA 94035 e-mail:

Abstract

Currently, in the oil and gas industry, finite element method (FEM)-based commercial software (such as ANSYS and abaqus) is commonly employed for determining the stress intensity factor (SIF). In their earlier work, the authors proposed an adaptive Gaussian process regression model (AGPRM) for the SIF prediction of a crack propagating in topside piping, as an inexpensive alternative to FEM. This paper is the continuation of the earlier work, as it focuses on the experimental validation of the proposed AGPRM. For validation purposes, the values of SIF obtained from experiments available in the literature are used. The experimental validation of AGPRM also consists of the comparison of the prediction accuracy of AGPRM and FEM relative to the experimentally derived SIF values. Five metrics, namely, root-mean-square error (RMSE), average absolute error (AAE), mean absolute percentage error (MAPE), maximum absolute error (MAE), and coefficient of determination (R2), are used to compare the accuracy. A case study illustrating the development and experimental validation of the AGPRM is presented. Results indicate that the prediction accuracy of AGPRM is comparable with and even higher than FEM, provided the training points of AGPRM are chosen aptly. Good prediction accuracy coupled with less time consumption favors AGPRM as an alternative to FEM for SIF prediction.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference12 articles.

1. Minimizing Hydrocarbon Release From Offshore Piping by Performing Probabilistic Fatigue Life Assessment;Process Saf. Environ,2017

2. Risk Based Inspection of Offshore Topsides Static Mechanical Equipment;Det Norske Veritas (DNV),2010

3. Generic Approach for Risk Assessment of Offshore Piping Subjected to Vibration Induced Fatigue;ASCE-ASME J. Risk Uncertainty Eng. Syst., Part B,2017

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3