Neural Network Approaches for Soft Biological Tissue and Organ Simulations

Author:

Sacks Michael S.1,Motiwale Shruti1,Goodbrake Christian1,Zhang Wenbo1

Affiliation:

1. James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, The University of Texas at Austin , Austin, TX 78712

Abstract

Abstract Given the functional complexities of soft tissues and organs, it is clear that computational simulations are critical in their understanding and for the rational basis for the development of therapies and replacements. A key aspect of such simulations is accounting for their complex, nonlinear, anisotropic mechanical behaviors. While soft tissue material models have developed to the point of high fidelity, in-silico implementation is typically done using the finite element (FE) method, which remains impractically slow for translational clinical time frames. As a potential path toward addressing the development of high fidelity simulations capable of performing in clinically relevant time frames, we review the use of neural networks (NN) for soft tissue and organ simulation using two approaches. In the first approach, we show how a NN can learn the responses for a detailed meso-structural soft tissue material model. The NN material model not only reproduced the full anisotropic mechanical responses but also demonstrated a considerable efficiency improvement, as it was trained over a range of realizable fibrous structures. In the second approach, we go a step further with the use of a physics-based surrogate model to directly learn the displacement field solution without the need for raw training data or FE simulation datasets. In this approach we utilize a finite element mesh to define the domain and perform the necessary integrations, but not the finite element method (FEM) itself. We demonstrate with this approach, termed neural network finite element (NNFE), results in a trained NNFE model with excellent agreement with the corresponding “ground truth” FE solutions over the entire physiological deformation range on a cuboidal myocardium specimen. More importantly, the NNFE approach provided a significantly decreased computational time for a range of finite element mesh sizes. Specifically, as the FE mesh size increased from 2744 to 175,615 elements, the NNFE computational time increased from 0.1108 s to 0.1393 s, while the “ground truth” FE model increased from 4.541 s to 719.9 s, with the same effective accuracy. These results suggest that NNFE run times are significantly reduced compared with the traditional large-deformation-based finite element solution methods. We then show how a nonuniform rational B-splines (NURBS)-based approach can be directly integrated into the NNFE approach as a means to handle real organ geometries. While these and related approaches are in their early stages, they offer a method to perform complex organ-level simulations in clinically relevant time frames without compromising accuracy.

Funder

National Heart, Lung, and Blood Institute

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3