Steady Two-Dimensional Conduction: Simple and Double Layer Potentials, Corner Singularities, and Induced Heat Flux

Author:

Lienhard John H.1

Affiliation:

1. Rohsenow Kendall Heat Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, MA 02139

Abstract

Abstract Two-dimensional steady-state heat conduction is possible outside closed boundaries on which two isothermal segments at different temperatures are separated by two adiabatic segments. Remarkably, previous research showed that the conduction shape factor for the region exterior to the boundary is equal to that for the interior region, despite the asymmetry and singularity of the boundary heat flux distributions. In this study, classical potential theory is used for the temperature and heat flux distributions as a combination of simple-layer and double-layer potentials, including the relationships between the values inside and outside the boundary curve. Isothermal boundaries exhibit an induced heat flux that varies from point-to-point on the boundary. The induced flux integrates to zero over each isothermal edge. Singularities of the heat flux are identified and resolved. Computations that validate the theory are provided for mixed boundary conditions on a disk and a square. Numerical fits to both the simple-layer and double-layer densities are given for the disk and the square. The analysis explains why the interior and exterior conduction shape factors are equal despite wildly differing heat flux distributions, and the results are compared to a previous study of this configuration. This paper also develops fundamental concepts of potential theory and can serve as a tutorial on the subject.

Publisher

ASME International

Reference21 articles.

1. Exterior Shape Factors From Interior Shape Factors;ASME J. Heat Transfer-Trans. ASME,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3