Flashback in Prevaporizing/Premixing Combustion Systems

Author:

Nein A. G.1,Mellor A. M.2

Affiliation:

1. Purdue University, West Lafayette, IN

2. Drexel University, Philadelphia, PA

Abstract

Upstream flame propagation in prevaporizing/premixing continuous combustors was examined. Simplified axisymmetric burners used in this investigation were selected to simulate the same fundamental combustion processes in practical hardware. Straight cylindrical premixing tubes were used to reduce the possibility of upstream flame propagation mechanisms not associated with classical flashback. Combustor pressure oscillations were monitored and indicated that no flashback occurred due to these oscillations. Propane was selected as the test fuel because of its rapid vaporization characteristics. A characteristic time approach was used to analyze the data because the flashback process can be viewed as a competition between a fluid mechanic time and a chemical reaction time. Use of this technique revealed that stoichiometric contours existed in the premixing tubes of this system at most overall equivalence ratios tested, since the flashback limit was observed to be independent of overall stoichiometry.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3