Investigation of Influential Parameters on Oil/Water Interfacial Tension During Low-Salinity Water Injection

Author:

Khalili Hossein1,Fahimpour Jalal1,Sharifi Mohammad2,Isfehani Zoha Dalal1

Affiliation:

1. Department of Petroleum Engineering, Amirkabir University of Technology, Tehran 1591634311, Islamic Republic of Iran

2. Department of Petroleum Engineering, Amirkabir University of Technology, Tehran 15875-4413, Islamic Republic of Iran

Abstract

Abstract Injecting low-salinity water has proved to be an efficient displacement process in oil reservoirs, owing to its ability to modify the properties at the fluid-rock and fluid-fluid interfaces in favor of mobilizing more oil. In this regard, reduction of interfacial tension (IFT) between oil and water is one of the key controlling parameters. It is suspected that the asphaltene constituents of the oil and type of water ions are responsible for such a reduction in IFT. In this study, systematic experimental investigations were carried out to scrutinize the influence of brine salinity, asphaltene concentration, and temperature on IFT. Single and multi-component brines, which in particular compose of NaCl, CaCl2, and MgCl2 salts, and two synthetic oils with 1 and 10 wt% asphaltene content were used at temperatures ranging from 25 to 80 °C. The results showed that the presence of salt in the solution can alter the distribution of polar components at the oil-brine interface due to the electrostatic effects, which in turn would change IFT of the system. IFT also decreased when temperature increased from 25 to 80 °C; however, the level of changes was strongly depended on the brine type, salinity level, and asphaltene content. The results also demonstrated that the crude oil with the higher asphaltene concentration experiences higher IFT reduction when is contacted with the low-salinity water. The new findings from this study will improve the understanding of the underlying mechanisms for low salinity water flooding in oil reservoirs.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference33 articles.

1. Low Salinity Water Flooding: Proof of Wettability Alteration On A Field Wide Scale;Vledder,2010

2. “Smart Water” for Oil Recovery From Fractured Limestone: A Preliminary Study;Strand;Energy Fuels,2008

3. Smart Water as Wettability Modifier in Carbonate and Sandstone: A Discussion of Similarities/Differences in the Chemical Mechanisms;RezaeiDoust;Energy Fuels,2009

4. “Smart Water” as a Wettability Modifier in Chalk: The Effect of Salinity and Ionic Composition;Fathi;Energy Fuels,2010

5. Injection of Dilute Brine and Crude Oil/Brine/Rock Interactions;Tang;Environmental Mechanics,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3