Shift Reactors and Physical Absorption for Low-CO2 Emission IGCCs

Author:

Chiesa Paolo1,Consonni Stefano1

Affiliation:

1. Politecnico di Milano, Milan, Italy

Abstract

Integrated Gasification Combined Cycles (IGCC) exhibit conditions particularly favourable to the sequestration of CO2. The concept pursued in this paper is the generation of syngas low in carbon, where most of the heating value of the coal fuel is carried by hydrogen. Catalytic shift reactors convert most of the CO in the syngas into CO2, which is subsequently removed by physical absorption and then compressed to make it suitable for transport and permanent storage. Energy balances, performance and cost of electricity are evaluated for two plants based on a Texaco gasifier and a large, heavy-duty gas turbine giving an overall IGCC power output between 350 and 400 MW. In one plant the raw syngas exiting the gasifier is cooled in a high-temperature, radiative cooler; in the other it is quenched by the injection of liquid water. With respect to “conventional” Texaco IGCCs, the reduction of specific CO2 emissions by 90% reduces LHV efficiency from 5 to 7 percentage points and increases the cost of electricity of about 45%. These penalties can be reduced by accepting lower reductions of CO2 emissions. Compared to the semi-closed cycle considered by other authors, where CO2 is the main component of the gas turbine working fluid, the plants analyzed here exhibit higher efficiency over the whole range of specific CO2 emissions.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3