Vibration Considerations in Foil-Bearing Design

Author:

Renshaw A. A.1

Affiliation:

1. Department of Mechanical Engineering, Columbia University, New York, NY 10027

Abstract

The semianalytic foil-bearing solution algorithm of Eshel and Elrod (1965) is extended to the solution of the linearized, free vibration problem for one-dimensional self-pressurized foil bearings. The results demonstrate that unwanted variations in the spacing between the moving foil and the stationary bearing surface can be eliminated through proper design. The penetration depth through which vibration of the free span penetrates into the foil bearing is determined by two exponential exponents, one describing inlet penetration, the other describing outlet penetration. When the inlet exponent is large and negative and the outlet exponent is large and positive, there is negligible coupling between the vibration of the free spans and the vibration of the spacing between the foil and the stationary bearing surface. This decoupling is desirable in magnetic recording and web handling applications and can be achieved by properly selecting two dimensionless parameters, one describing the ratio of the viscous forces to the tape tension, the other describing the ratio of the tape transport speed to the wave speed in the tape. The values of these two parameters in current designs of both magnetic tape recording and web-handling devices are consistent with the design goal of minimizing foil vibration over the bearing. The inlet and outlet exponents are the roots of a fourth-order polynomial, and, in most cases, good estimates for these roots can be found without explicitly solving the foil-bearing problem. The effects of the air compressibility, tape bending stiffness, and slip flow are also investigated. Tape bending stiffness is found to play a significant role in vibration coupling. These results provide new insight into the influence of vibration on foil-bearing design.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference13 articles.

1. Nominal Clearance of the Foil Bearing;Baumeister;IBM Journal of Research and Development,1963

2. The Foil Bearing—A New Departure in Hydrodynamic Lubrication;Blok;Lubrication Engineering,1953

3. The Theory of the Infinitely Wide, Perfectly Flexible, Self-Acting Foil Bearing;Eshel;ASME Journal of Basic Engineering,1965

4. A Tightly Coupled Numerical Foil Bearing Solution;Lacey;IEEE Transactions on Magnetics,1990

5. On the Vibration of Coupled Traveling String and Air Bearing Systems;Lakshmikumaran;ASME Journal of Vibration and Acoustics,1996

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mechanics and Tribology of Flexible Media in Information Processing;Modern Tribology Handbook, Two Volume Set;2000-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3