On the Development of Incompressible Round and Equilateral Triangular Jets Due to Reynolds Number Variation

Author:

Aleyasin Seyed Sobhan1,Fathi Nima2,Tachie Mark Francis1,Vorobieff Peter2,Koupriyanov Mikhail3

Affiliation:

1. Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada e-mail:

2. Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131 e-mail:

3. Price Industries Limited, Winnipeg, MB R2K 3Z9, Canada e-mail:

Abstract

The aim of this study is to examine the effects of Reynolds number (Re = 6000–20,000) on mean and turbulent quantities as well as turbulent structures in the near and intermediate regions of equilateral triangular and round sharp contraction jets. The results show shorter potential core length, faster growth of turbulence intensity, and faster diffusion of turbulent structures to the centerline of the triangular jets, implying enhanced mixing in the near field of these jets. On the other hand, the velocity decay and jet spread rates are higher in the round jets. The obtained data in the round jets show that the jet at Re = 6000 has the most effective mixing, while an increase in Reynolds number reduces the mixing performance. In the triangular jets, however, no Reynolds number effects were observed on the measured quantities including the length of the potential core, the decay and spread rates, the axis-switching locations, and the value of the Reynolds number. In addition, the asymptotic values of the relative turbulence intensities on the jet centerline are almost independent of the Reynolds number and geometry. The ratios of transverse and spanwise Reynolds stresses are unity except close to the jet exit where the flow pattern in the major plane of the triangular jet deflects toward the flat side. Proper orthogonal decomposition (POD) analysis revealed that turbulent structures in minor and major planes have identical fractional kinetic energy. The integral length scales increased linearly with the streamwise distance with identical slope for all the test cases.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3