Physics-Informed Machine Learning of Argon Gas-Driven Melt Pool Dynamics

Author:

Sharma R.12,Guo Y. B.12,Raissi M.3,Guo W. Grace45

Affiliation:

1. Rutgers University-New Brunswick Department of Mechanical, and Aerospace Engineering, , Piscataway, NJ 08854;

2. Rutgers University-New Brunswick New Jersey Advanced Manufacturing Institute, , Piscataway, NJ 08854

3. University of Colorado Department of Applied Mathematics, , Boulder, CO 80309

4. Rutgers University-New Brunswick New Jersey Advanced Manufacturing Institute, , Piscataway, NJ 08854 ;

5. Rutgers University-New Brunswick Department of Industrial, and Systems Engineering, , Piscataway, NJ 08854

Abstract

Abstract Melt pool dynamics in metal additive manufacturing (AM) is critical to process stability, microstructure formation, and final properties of the printed materials. Physics-based simulation, including computational fluid dynamics (CFD), is the dominant approach to predict melt pool dynamics. However, the physics-based simulation approaches suffer from the inherent issue of very high computational cost. This paper provides a physics-informed machine learning method by integrating the conventional neural networks with the governing physical laws to predict the melt pool dynamics, such as temperature, velocity, and pressure, without using any training data on velocity and pressure. This approach avoids solving the nonlinear Navier–Stokes equation numerically, which significantly reduces the computational cost (if including the cost of velocity data generation). The difficult-to-determine parameters' values of the governing equations can also be inferred through data-driven discovery. In addition, the physics-informed neural network (PINN) architecture has been optimized for efficient model training. The data-efficient PINN model is attributed to the extra penalty by incorporating governing PDEs, initial conditions, and boundary conditions in the PINN model.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

ASME International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3