Numerical Simulations of Highly Preheated Air Combustion in an Industrial Furnace

Author:

Ishii T.1,Zhang C.2,Sugiyama S.1

Affiliation:

1. Materials and Processing Research Center, NKK Corporation, Fukuyama, Hiroshima, Japan 721

2. Mechanical and Materials Engineering, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Abstract

The numerical simulations of reactive turbulent flows and heat transfer in an industrial slab reheat furnace in which the combustion air is highly preheated have been carried out. The influence of the ratio of the air and fuel injection velocities on the NOx production rate in the furnace has also been studied numerically. A moment closure method with the assumed β probability density function (PDF) for mixture fraction was used in the present work to model the turbulent non-premixed combustion process in the furnace. The combustion model was based on the assumption of instantaneous full chemical equilibrium. The turbulence was modeled by the standard k-ε model with a wall function. The numerical simulations have provided complete information on the flow, heat, and mass transfer in the furnace. The results also indicate that a low NOx emission and high heating efficiency can be achieved in the slab reheat furnace by using low NOx regenerative burners. It is found that the air/fuel injection velocity ratio has a strong influence on the NOx production rate in the furnace.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3