Computational Fluid Dynamic Simulations of Heat Transfer From a 2 × 2 Wire-Wrapped Fuel Rod Bundle to Supercritical Pressure Water

Author:

Podila Krishna1,Rao Yanfei1

Affiliation:

1. Canadian Nuclear Laboratories, Chalk River, ON K0J 1P0, Canada e-mail:

Abstract

Within the Generation-IV International Forum, Canadian Nuclear Laboratories (CNL) led the conceptual fuel bundle design effort for the Canadian supercritical water cooled reactor (SCWR). The proposed fuel rod assembly for the Canadian SCWR design comprised of 64-elements with spacing between elements maintained using the wire-wrap spacers. Experimental data and correlations are not available for the fuel-assembly concept of the Canadian SCWR. To analyze the thermalhydraulic performance of the new bundle design, CNL is using computational fluid dynamics (CFD) as well as the subchannel approach. Simulations of wire-wrapped bundles can benefit from the increased fidelity and resolution of a CFD approach due to its ability to resolve the boundary layer phenomena. Prior to the application, the CFD tool has been assessed against experimental heat transfer data obtained with bundle subassemblies to identify the appropriate turbulence model to use in the analyses. In the present paper, assessment of CFD predictions was made with the wire-wrapped bundle experiments performed at Xi'an Jiaotong University (XJTU) in China. A three-dimensional CFD study of the fluid flow and heat transfer at supercritical pressures for the rod-bundle geometries was performed with the key parameter being the fuel rod wall temperature. This investigation used Reynolds-averaged Navier–Stokes turbulence models with wall functions to investigate the behavior of flow through the wire-wrapped fuel rod bundles with water subjected to a supercritical pressure of 25 MPa. Along with the selection of turbulence models, CFD results were found to be dependent on the value of turbulent Prandtl number used in simulating the experimental test conditions for the wire-wrapped fuel rod configuration. It was found that the CFD simulation tends to overpredict the fuel wall temperature, and the predicted location of peak temperature differs from the measurement by up to 65 deg.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Reference18 articles.

1. A Technology Roadmap for Generation IV Nuclear Energy Systems;U.S. DOE Nuclear Energy Research Advisory Committee and GIF,2002

2. Super-Critical Water-Cooled Reactor,2016

3. Brockmeyer, L. M., Sarikurt, F. S., and Hassan, Y. A., 2015, “CFD Investigation of Wire-Wrapped Fuel Rod Bundles and Flow Sensitivity to Bundles Size,” 16th International Topical Meeting on Nuclear Reactor Thermalhydraulics (NURETH-16), Chicago, IL, Aug. 30–Sept. 4, pp. 6678–6691.

4. Thermalhydraulic Analysis for Wire-Wrapped Cores;Nucl. Eng. Des.,2009

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3