CFD Modeling of Flow and Heat Transfer Inside a Liquid-Cooled Exhaust Manifold

Author:

Milanovic Rade1,Zhou Chenn Q.1,Majdak Jim2,Cantwell Robert2

Affiliation:

1. Purdue University at Calumet, Hammond, IN

2. Hadady Corporation, South Holland, IL

Abstract

Liquid cooled exhaust manifolds are used in turbo charged diesel and gas engines in the marine and various industrial applications. Performance of the manifold has a significant impact on the engine efficiency. Modifying manifold design and changing operational parameters are ways to improve its performance. With the rapid advance of computer technology and numerical methods, Computational Fluid Dynamics (CFD) has become a powerful tool that can provide useful information for manifold optimization. In this study, commercial CFD software (FLUENT®) was used to analyze liquid cooled exhaust manifolds. Detailed information of flow property distribution and heat transfer were obtained in order to provide a fundamental understanding of the manifold operation. Experimental data was compared with the CFD results to validate the numerical simulation. Computations were performed to investigate the parametric effects of operating conditions (engine rotational speed, coolant flow rate, coolant inlet temperature, exhaust gas inlet temperature, surface roughness of the manifold’s material) on the performance of the manifold. Results were consistent with the experimental observations. Suggestions were made to improve the manifold design and performance.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3