An Investigation of Copper Dissolution and the Formation of Intermetallic Compounds in Molten Tin and Tin-Silver Solders

Author:

Faizan M.1,McCoy R. A.1,Lin D. C.2,Srivatsan T. S.2,Wang G.-X.2

Affiliation:

1. Youngstown State University, Youngstown, OH

2. University of Akron, Akron, OH

Abstract

This paper presents an experimental study of copper dissolution in molten tin and tin-silver (Sn-Ag) solders and the formation and presence of the Cu-Sn intermetallic compound at solder/copper interfaces. During the experiments, copper (99.9% pure) samples, coated with a RMA flux, were dipped vertically in a molten solder for different time periods ranging from 5 seconds to 10 minutes. The molten solder was maintained at temperatures of 232°C, 250°C and 300°C for pure tin and 221°C, 250°C, and 300°C for Sn-3.5%Ag respectively. The samples were then cut, cleaned and cold mounted in epoxy at ambient temperature. Mechanical grinding, finish polishing, etching, and optical metallographic procedures were utilized for examining the microstructures of the polished and etched samples. The average thickness of the intermetallic compound and the amount of copper dissolved was determined. Experimental results indicate the temperature of molten solder to control the rate of dissolution of copper and the formation and presence of intermetallic compounds at the interfaces. At a given temperature of the solder temperature, the rate of dissolution of copper in the solder revealed a rising trend with an increase in dwell time of copper in the solder. For short contact time periods, the dissolution rate is low and the thickness of the intermetallic compound is small. With an increase in dwell time, the dissolution rate of copper rapidly increases and eventually reaches a plateau. Initiation of dissolution of copper causes a layer of the Sn-Cu intermetallic compound to form around the copper substrate. This in turn prevents direct contact of the copper substrate with the molten solder. The rate of formation of the layer of intermetallic compound reveals a similar trend. Based on experimental results, the kinetic parameters involved in governing the growth of the intermetallic were determined for the two solders. The parameters can be used to estimate the kinetics of copper dissolution and intermetallic compound formation during soldering.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Challenges in Minimizing Copper Dissolution for Lead Free Wave Soldering in Surface Mount Technology Going Towards Green Manufacturing;International Journal of Precision Engineering and Manufacturing-Green Technology;2021-05-07

2. Dissolution kinetics of copper in lead-free liquid solders;Soldering & Surface Mount Technology;2015-04-07

3. Kinetics-Based Modeling of Bond-Metal Dissolution and IMC During Soldering;Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology;2006-01-01

4. Non-Equilibrium Dissolution Kinetics of Micro-Size Metal Particles in Lead-Free Solders;Manufacturing Engineering and Materials Handling, Parts A and B;2005-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3