Wall Heat Flux Partitioning During Subcooled Flow Boiling at Low Pressures

Author:

Basu Nilanjana1,Warrier Gopinath R.1,Dhir Vijay K.1

Affiliation:

1. University of California at Los Angeles, Los Angeles, CA

Abstract

In this work a mechanistic model for nucleate boiling heat flux as a function of wall superheat has been developed. The premise of the proposed model is that the entire energy from the wall is first transferred to the superheated liquid layer adjacent to the wall. A fraction of this energy is then utilized for vapor generation. Contribution of each of the heat transfer mechanisms — forced convection, transient conduction, and vapor generation, has been quantified in terms of nucleation site densities, bubble departure and lift off diameters, bubble release frequency, flow parameters like velocity, inlet subcooling, wall superheat, and fluid and surface properties including system pressures. To support the model development, subcooled flow boiling experiments were conducted at pressures of 1.03 to 3.2 bar for a wide range of mass fluxes (124 to 926 kg/m2s), heat fluxes (2.5 to 90 W/cm2) and for contact angles varying from 30° to 90°. Model validation has been carried out with low-pressure data obtained from present work and the wall heat flux predictions are within ± 30% of experimental values. Application of the model to high-pressure data available in literature also showed good agreement, signifying that the model can be extended to all pressures.

Publisher

ASMEDC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3