Transient Analysis of Flat Heat Pipes

Author:

Vadakkan Unnikrishnan1,Murthy Jayathi Y.1,Garimella Suresh V.1

Affiliation:

1. Purdue University, West Lafayette, IN

Abstract

A stable numerical procedure is developed to analyze the transient performance of flat heat pipes for large input heat fluxes and high wick conductivity. Computation of flow and heat transfer in a heat pipe is complicated by the strong coupling among the velocity, pressure and temperature fields with phase change at the interface between the vapor and wick. A structured collocated finite volume scheme is used in conjunction with the SIMPLE algorithm to solve the continuity, energy and momentum equations. In addition, system pressurization is computed using overall mass balance. The stability of the standard sequential procedure is improved by accounting for the coupling between the evaporator/condenser mass flow rate and the interface temperature and pressure as well as the system pressure. The improved numerical scheme is applied to a flat two-dimensional heat pipe and shown to perform well. Parametric studies are performed by varying the vapor core thickness of the heat pipe and the heat input at the evaporator. The model predictions are validated by comparing the heat pipe wall temperatures against experimental values.

Publisher

ASMEDC

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3