Uncertainty Modeling Using a Dimension Search and a Genetic Algorithm With Application to Robust Stability Analysis

Author:

Kang Zuheng1,Fales Roger C.2,Ansaf Bahaa3

Affiliation:

1. Department of Computer Science, Marquette University, Milwaukee, WI 53233 e-mail:

2. Mechanical and Aerospace Engineering, University of Missouri-Columbia, Columbia, MO 65211 e-mail:

3. Department of Engineering, Colorado State University-Pueblo, Pueblo, CO 81001 e-mail:

Abstract

This work uses a new method of determining a parameterization, resampling, and dimension search of an uncertainty model that can be used for efficient engineering models in control design. An algorithm using the Cayley–Menger determinant as a measure of the dimension test geometry (volume/area/length) of the parametric data points is presented to search for a reduced number of dimensions that can be used to represent the parameters of a model that captures the uncertainty in a dynamic system (uncertainty model). A genetic algorithm (GA) is utilized to solve the nonconvex problem of finding the coefficients of a parameterization of the uncertainty model. A resampling approach for the uncertainty model is also presented. The methods presented here are demonstrated on an electrohydraulic valve control system problem. This demonstration includes consideration of the dimensional search, data resampling, and parameterizing of an uncertainty class determined from test data for 30 replications of an electrohydraulic flow control valve which were experimentally modeled in the lab. The suggested resampling method and the parameterization of the uncertainty are used to analyze the robust stability of a control system for the class of valves using both frequency domain h-infinity methods and analysis of closed-loop poles for the resampled uncertainty model.

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3