Static and Modal Topology Optimization of Turbomachinery Components

Author:

Rindi Andrea1,Meli Enrico2,Boccini Enrico3,Iurisci Giuseppe4,Corbò Simone4,Falomi Stefano4

Affiliation:

1. Professor MDM Laboratory, Department of Industrial Engineering, University of Florence, Via di Santa Marta 3, Firenze 50139, Italy e-mail:

2. Assistant Professor MDM Laboratory, Department of Industrial Engineering, University of Florence, Via di Santa Marta 3, Firenze 50139, Italy e-mail:

3. MDM Laboratory, Department of Industrial Engineering, University of Florence, Via di Santa Marta 3, Firenze 50139, Italy e-mail:

4. General Electric Nuovo Pignone, Via Felice Matteucci, Florence 50127, Italy e-mail:

Abstract

The need to be more and more competitive is pushing the complexity of aerodynamic and mechanical design of rotating machines at very high levels. New concepts are required to improve the current machine performances from many points of view: aerodynamics, mechanics, rotordynamics, and manufacturing. Topology optimization is one of the most promising new approaches in the turbomachinery field for mechanical optimization of rotoric and statoric components. It can be a very effective enabler to individuate new paths and strategies, and to go beyond techniques already consolidated in turbomachinery design, such as parametric and shape optimizations. Topology optimization methods improve material distribution within a given design space (for a given set of boundary conditions and loads) to allow the resulting layout to meet a prescribed set of performance targets. Topology optimization allows also to change the topology of the structures (e.g., when a shape splits into two parts or develops holes). This methodology has been applied to a turbine component to reduce the static stress level and the weight of the part and, at the same time, to tune natural frequencies. Thus, the interest of this work is to investigate both static and dynamic/modal aspects of the structural optimization. These objectives can be applied alone or in combination, performing a single analysis or a multiple analysis optimization. It has been possible to improve existing components and to design new concepts with higher performances compared to the traditional ones. This approach could be also applied to other generic components. The research paper has been developed in collaboration with Nuovo Pignone General Electric S.p.A. that has provided all the technical documentation. The developed geometries of the prototypes will be manufactured in the near future with the help of an industrial partner.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3