Numerical Prediction of Flow and Combustion Characteristics of a Model Annular Combustor

Author:

Chow S. K.1,McGuirk J. J.2

Affiliation:

1. Imperial College, London, UK

2. Loughborough University of Technology, Loughborough, Leicestershire, UK

Abstract

Two instantaneous chemistry descriptions (full chemical equilibrium and laminar flamelet) were applid to the prediction of gaseous reaction in a small-scale combustor. The chemical state relationships were combined with a single conserved scalar/β-function pdf/k-ε turbulence model closure. Encouraging results were obtained for the flowfield and conserved scalar distributions, although only when the jet entry boundary conditions were altered to accord closely with several expected experimental features. These predictions imply that any acceptable approach to combustor modelling must extend calculations to include the outer annulus. Exit temperature levels were predicted fairly well, but the quality of internal distributions deteriorated due to errors in predicted fuel/air mixing. Differences between the two chemistry models were small except for CO and H2 species concentrations where the flamelet model gave better agreement with experiments.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of gas turbine combustor flow by a finite element code;28th Joint Propulsion Conference and Exhibit;1992-07-06

2. Visualization of Combusting Flows;Flow Visualization VI;1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3