A Course-Based Undergraduate Research Experience in Biofluid Mechanics

Author:

Clyne Alisa Morss1,Shieh Adrian C.2,Stanford Jennifer S.3

Affiliation:

1. Fischell Department of Bioengineering, University of Maryland, 4124 A James Clark Hall 8278 Paint Branch Dr, College Park, MD 20742

2. School of Biomedical Engineering, Science and Health Systems, Drexel University, Bossone 710 3141 Chestnut Street, Philadelphia, PA 19104

3. Center for the Advancement of STEM Teaching and Learning Excellence (CASTLE), Department of Biology, Drexel University, PISB 425 3245 Chestnut Street, Philadelphia, PA 19104

Abstract

Abstract Course-based undergraduate research experiences (CURE) are a valuable tool to increase research exposure for larger undergraduate cohorts. We implemented a CURE within a senior-level biofluid mechanics course that was primarily taught using a flipped classroom approach. Due to the large class size, the students analyzed data that was publicly available and produced by one of our laboratories. Student teams then developed hypotheses based on the data analysis and designed a set of in vitro and in vivo experiments to test those hypotheses. The hypotheses and experiments that were most highly rated by the class were then tested in our laboratory. At the end of the class, student gains were assessed by self-report and compared to those self-reported by students engaging in a traditional freshman undergraduate summer research experience. While the students in the CURE reported moderate gains in self-assessment of research-based skills, their self-reported gains were statistically significantly lower than those reported by students who participated in the traditional research experience. We believe that the CURE could be improved through implementation in a lower level class, enabling students to observe laboratory experiments, and providing additional feedback throughout the hypothesis development and experimental design process. Overall, the CURE is an innovative way to expand research experiences, in particular for engineering students who often do not participate in hypothesis-driven research during their undergraduate education.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3