HMM-Based Fault Detection and Diagnosis Scheme for Rolling Element Bearings

Author:

Ocak Hasan1,Loparo Kenneth A.1

Affiliation:

1. Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH

Abstract

In this paper, we introduce a new bearing fault detection and diagnosis scheme based on hidden Markov modeling (HMM) of vibration signals. Features extracted from amplitude demodulated vibration signals from both normal and faulty bearings were used to train HMMs to represent various bearing conditions. The features were based on the reflection coefficients of the polynomial transfer function of an autoregressive model of the vibration signals. Faults can be detected online by monitoring the probabilities of the pretrained HMM for the normal case given the features extracted from the vibration signals. The new technique also allows for diagnosis of the type of bearing fault by selecting the HMM with the highest probability. The new scheme was also adapted to diagnose multiple bearing faults. In this adapted scheme, features were based on the selected node energies of a wavelet packet decomposition of the vibration signal. For each fault, a different set of nodes, which correlates with the fault, is chosen. Both schemes were tested with experimental data collected from an accelerometer measuring the vibration from the drive-end ball bearing of an induction motor (Reliance Electric 2 HP IQPreAlert) driven mechanical system and have proven to be very accurate.

Publisher

ASME International

Subject

General Engineering

Reference22 articles.

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review on prognostics and health management in smart factory: From conventional to deep learning perspectives;Engineering Applications of Artificial Intelligence;2023-11

2. Machine condition change detection based on data segmentation using a three-regime, α-stable Hidden Markov Model;Measurement;2023-10

3. Rolling Element Bearing Fault Diagnosis Using Hybrid Machine Learning Models;Proceedings of the 11th IFToMM International Conference on Rotordynamics;2023-08-27

4. Vibration and Acoustics Analyses of Tapered Roller Bearing;Journal of Vibration Engineering & Technologies;2023-05-24

5. Fully Simulated-Data-Driven Transfer-Learning Method for Rolling-Bearing-Fault Diagnosis;IEEE Transactions on Instrumentation and Measurement;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3