Experimental and Numerical Studies on Microscale Bending of Stainless Steel With Pulsed Laser

Author:

Chen G.1,Xu X.1,Poon C. C.2,Tam A. C.2

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

2. IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95190

Abstract

Laser forming or laser bending is a newly developed, flexible technique which modifies the curvature of sheet metal by thermal residual stresses instead of external forces. The process is influenced by many parameters such as laser parameters, material properties, and target dimensions. In this work, a pulsed Nd:YLF laser was used as the energy source. The laser beam was focused into a line shape irradiating on the stainless steel specimen to induce bending. The bending angle was measured at various processing conditions. A finite element analysis was performed with the use of a two-dimensional plane strain model to calculate the thermoelastoplastic deformation process. Experimental measurements and computational results were in good agreement. Numerical sensitivity studies were performed to evaluate the effects of the unavailable material property data at high temperature. It was found that both optical reflectivity and thermal expansion coefficient influenced the bending angle significantly, while other extrapolated material properties at high temperature yielded acceptable results.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3