Multiscale Modeling of Cardiovascular Flows for Clinical Decision Support

Author:

Marsden Alison L.1,Esmaily-Moghadam Mahdi1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093

Abstract

Patient-specific cardiovascular simulations can provide clinicians with predictive tools, fill current gaps in clinical imaging capabilities, and contribute to the fundamental understanding of disease progression. However, clinically relevant simulations must provide not only local hemodynamics, but also global physiologic response. This necessitates a dynamic coupling between the Navier–Stokes solver and reduced-order models of circulatory physiology, resulting in numerical stability and efficiency challenges. In this review, we discuss approaches to handling the coupled systems that arise from cardiovascular simulations, including recent algorithms that enable efficient large-scale simulations of the vascular system. We maintain particular focus on multiscale modeling algorithms for finite element simulations. Because these algorithms give rise to an ill-conditioned system of equations dominated by the coupled boundaries, we also discuss recent methods for solving the linear system of equations arising from these systems. We then review applications that illustrate the potential impact of these tools for clinical decision support in adult and pediatric cardiology. Finally, we offer an outlook on future directions in the field for both modeling and clinical application.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3