Using Predictive Modeling and Classification Methods for Single and Overlapping Bead Laser Cladding to Understand Bead Geometry to Process Parameter Relationships

Author:

Urbanic R. J.1,Saqib S. M.2,Aggarwal K.3

Affiliation:

1. Department of Mechanical, Automotive, and Materials Engineering, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada e-mail:

2. Department of Industrial and Manufacturing Systems Engineering, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada e-mail:

3. FCA, 800 Chrysler Drive, Auburn Hills, MI 48326 e-mail:

Abstract

Developing a bead shape to process parameter model is challenging due to the multiparameter, nonlinear, and dynamic nature of the laser cladding (LC) environment. This introduces unique predictive modeling challenges for both single bead and overlapping bead configurations. It is essential to develop predictive models for both as the boundary conditions for overlapping beads are different from a single bead configuration. A single bead model provides insight with respect to the process characteristics. An overlapping model is relevant for process planning and travel path generation for surface cladding operations. Complementing the modeling challenges is the development of a framework and methodologies to minimize experimental data collection while maximizing the goodness of fit for the predictive models for additional experimentation and modeling. To facilitate this, it is important to understand the key process parameters, the predictive model methodologies, and data structures. Two modeling methods are employed to develop predictive models: analysis of variance (ANOVA), and a generalized reduced gradient (GRG) approach. To assist with process parameter solutions and to provide an initial value for nonlinear model seeding, data clustering is performed to identify characteristic bead shape families. This research illustrates good predictive models can be generated using multiple approaches.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3