Affiliation:
1. Department of Mechanical Engineering, University of California, Berkeley, Calif. 94720
Abstract
Experimental measurements are compared with theoretical predictions for radiative transfer in suspensions of 11.0 μ dia Dow latex particles using 0.6328 μ He-Ne laser light. Both absorbing and nonabsorbing particles are studied with particle volume fraction ranging from 0.01 to 0.7 (close-packed). Predictions based on the classical assumptions that particles act as independent point scatterers are shown to give close agreement with experimental data even for close-packed conditions, as long as the interparticle clearance is greater than about 0.3 wavelengths. Evidence is presented indicating that interparticle spacing measured in wavelengths is the most critical parameter to gauge the importance of dependent scattering and that high particle concentration alone is no indication that scattering is dependent. The results have direct application to the design of packed/fluidized bed systems wherein thermal radiation is a significant heat transfer mode.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
170 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献