A Parametric Investigation of Corneal Laser Surgery Based on the Multilayer Dynamic Photothermal Model

Author:

Zhang Juqi1,Ren Yatao1,Yin Yanmei1,Qi Hong1

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, China

Abstract

Abstract Corneal laser surgery is a widely used method for the treatment of ocular myopia, hyperopia, and astigmatism. Although it is a well-established technique, the photothermal properties of the cornea are often overlooked, causing unexpected changes in temperature during laser irradiation. Therefore, there is a need for further investigation of the temperature response of the cornea under laser irradiation. In the present work, a photothermal corneal numerical model is presented, assuming the stratification of the cornea with laser ablation in an uncoagulated layer, a coagulated layer, a dehydrating layer, a dried layer, and a carbonized layer. The modified Pennes' bioheat transfer equation and Lambert-Beer's law are applied to simulate heat transfer in the corneal tissue during laser irradiation. And the corneal dynamic photothermal parameters are considered in the proposed model. The central surface temperature, the boundary and thickness of each layer, and the thermal damage during laser irradiation are investigated. From the model, it was found that in the steady-state process, the thickness of the coagulated layer was 2.6, 14.4, and 52.4 times larger than that of the dehydrating layer, the dried layer, and the carbonized layer, respectively. The thickness of the corneal thermal damage gradually increased, and reached a peak of 0.196 mm at about 18.2 ms. Subsequently, it sharply decreased by 0.01 mm before stabilizing. On this basis, the influence of laser intensity is investigated. The parametric investigation and analysis presented provide a theoretical basis for corneal laser surgery, which can be used to improve our understanding of laser-tissue surgery.

Funder

Fundamental Research Funds for the Central Universities

Heilongjiang Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference40 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3