Testing Propeller Tip Modifications to Reduce Acoustic Noise Generation on a Quadcopter Propeller

Author:

Treuren Kenneth W. Van1,Wisniewski Charles F.2

Affiliation:

1. Department of Mechanical Engineering, Baylor University, One Bear Place, #97356, Waco, TX 76798-7356

2. Wisniewski Enterprises, Department of Aeronautics, HQ USAF Academy/DFANL, USAF Academy, CO 80840

Abstract

Abstract If vertical lift vehicles are to operate near population centers, they must be both quiet and efficient. The goal of this research is to develop a propeller that is more efficient and generates less noise than a stock DJI Phantom 2 quadcopter propeller. Reducing the generated tip vortex was the main objective. After studying the literature, seven promising tip treatments were selected and applied to a stock DJI Phantom 2 propeller to reduce the tip vortex. Several different configurations were tested for each tip treatment to determine the rpm and required power to hold 0.7 lbf thrust, the static hover condition. For each test, operating at the hover condition, a radial traverse 1 in. behind the propeller permitted the measurement of the near field sound pressure level (SPL) to find the maximum SPL and its radial location. Several configurations tested resulted in 8–10 dBA reductions in SPL when compared to the stock propeller; however, these configurations also resulted in an unacceptable increase in the power required to achieve the desired thrust. The most promising tip treatment tested was the trailing edge (TE) notch at a radial location of 0.95 r/R with a double slot width and a double depth (DSDD). The DSDD configuration as tested reduced the SPL 7.2 dBA with an increase in power required of only 3.96% over the stock propeller. This tradeoff, while not the largest reduction in noise generation measured, had an acceptable power increase for the decrease in SPL achieved.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference62 articles.

1. Aerospace Sector Could See Overhaul From Electric Propulsion,2018

2. Will Jet Aircraft of the Future Be Powered by Electricity?,2016

3. LEAPTech to Demonstrate Electric Propulsion Technologies;NASA,2015

4. The Week in Technology, Oct. 2-6, 2017,2016

5. Game of Drones,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3