Affiliation:
1. Department of Electrical Engineering, Shadegan Branch, Islamic Azad University, Shadegan 6431837195, Iran
Abstract
AbstractThe doubly fed induction generator (DFIG)-based wind turbine as a nonlinear, compound, and multivariable time-varying system encompasses several uncertainties especially unfamiliar disturbances and unmodeled dynamics. The design of a high-performance and reliable controller for this system is regarded as a complex task. In this paper, an effective and roust fractional-order sliding mode controller (FOSMC) has been designed to accurately regulate the active and reactive power of DFIG. FOSMC has overcome the system uncertainties and abated the chattering amplitude. Since tuning the FOSMC is a challenging assignment, the application of a multi-objective optimization algorithm can efficiently and precisely solve the design problem. In this regard, non-dominated sorting multi-objective gray wolf optimizer (MOGWO) is taken into account to optimally adjust the FOSMC. In a word, the simulation results have definitively validated robustness of MOGWO-based FOSMC in order to accurately track DFIG's active and reactive power.
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献