Combustion Oscillations in Burners With Fuel Spray Atomisers

Author:

Zhu M.1,Dowling A. P.1,Bray K. N. C.1

Affiliation:

1. University of Cambridge, Cambridge, United Kingdom

Abstract

Most types of combustion-driven devices experience combustion instabilities. For aero-engine combustors, the frequency of this oscillation is typically in the range 60–120Hz and is commonly called ‘rumble’. The rumble oscillations involve coupling between the air and fuel supplies and unsteady flow in the combustor. Essentially pressure fluctuations alter the inlet fuel and air, thereby changing the rate of combustion, which at certain frequencies further enhances the pressure perturbation and so leads to self-excited oscillations. The large residence time of the liquid fuel droplets, at idle and sub-idle conditions, means that liquid and gaseous phases must both be considered. In the present work, we use a numerical model to investigate forced unsteady combustion due to specified time-dependent variations in the fuel and air supplies. Harmonic variations in inlet air and fuel flows have been considered and the resulting unsteady combustion calculated. The influence of droplet size distribution has also been investigated. The calculations provide insight into understanding the interaction between atomization, unsteady combustion and flow oscillations.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forced Low-Frequency Spray Characteristics of a Generic Airblast Swirl Diffusion Burner;Journal of Engineering for Gas Turbines and Power;2005-04-01

2. Self-Excited Oscillations in Combustors With Spray Atomizers;Journal of Engineering for Gas Turbines and Power;2000-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3