The Coordinated Immersion and Variance Control of Power Systems With Excitation and Steam-Valve

Author:

Li Shengtao1,Liu Xiaomei2,Liu Xiaoping3

Affiliation:

1. School of Information Science and Engineering, Shandong Normal University, Jinan 250358, China e-mail:

2. School of Management Science and Engineering, Shandong Normal University, Jinan 250358, China

3. Faculty of Engineering, Lakehead University, Thunder Bay, ON P7B5E1, Canada

Abstract

Transient stability is the key problem for reliable and secure planning under the new deregulated market conditions. By using immersion and invariance (I&I) method, a nonlinear coordinated generator excitation and steam-valve controller is designed to improve transient stability of power systems. The proposed coordinated I&I controller can assure power angle stability, voltage, and frequency regulations, when a large disturbance occurs on the transmission line or a small perturbation to mechanical power. Compared with the Lyapunov method, the proposed method does not need to construct a Lyapunov energy function. Some numerical simulations are used to validate the proposed controller. Simulation results show that the nonlinear coordinated I&I controller has better control performance than the existing coordinated passivation controller (CPC).

Funder

National Natural Science Foundation of China

Ministry of Education of the People's Republic of China

Distinguished Middle-Aged and Young Scientist Encourage and Reward Foundation of Shandong Province

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3