Dynamic Response Optimization of Mechanical Systems With Multiplier Methods

Author:

Paeng J. K.1,Arora J. S.1

Affiliation:

1. Optimal Design Laboratory, College of Engineering, The University of Iowa, Iowa City, Iowa 52242

Abstract

A basic hypothesis of this paper is that the multiplier methods can be effective and efficient for dynamic response optimization of large scale systems. The methods have been previously shown to be inefficient compared to the primal methods for static response applications. However, they can be more efficient for dynamic response applications because they collapse all time-dependent constraints and the cost function to one functional. This can result in substantial savings in the computational effort during design sensitivity analysis. To investigate this hypothesis, an augmented functional for the dynamic response optimization problem is defined. Design sensitivity analysis for the functional is developed and three example problems are solved to investigate computational aspects of the multiplier methods. It is concluded that multiplier methods can be effective for dynamic response problems but need numerical refinements to avoid convergence difficulties in unconstrained minimization.

Publisher

ASME International

Subject

General Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;Introduction to Optimum Design;2025

2. More on numerical methods for unconstrained optimum design;Introduction to Optimum Design;2025

3. A new formulation for transient response optimization of structures based on constraint aggregation functions;Engineering Optimization;2021-08-10

4. Optimization of Dynamic Response of Cantilever Beam by Genetic Algorithm;Nonlinear Approaches in Engineering Applications;2019-08-07

5. A working-set approach for sizing optimization of frame-structures subjected to time-dependent constraints;Structural and Multidisciplinary Optimization;2018-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3