The Response of a Turbulent Boundary Layer to an Upstanding Step Change in Surface Roughness

Author:

Antonia R. A.1,Luxton R. E.1

Affiliation:

1. Department of Mechanical Engineering, The University of Sydney, Sydney, New South Wales, Australia

Abstract

Measurements of the flow field downstream of an upstanding step change in surface roughness are presented. The roughness has the form of two-dimensional square section ribs placed transversely across the floor of the wind tunnel with the first element upstanding from the surface. The surface upstream of the roughness is smooth and is of sufficient length to allow a fully developed smooth wall turbulent boundary layer to be established. The roughness height is approximately 6 percent of the boundary layer thickness on the smooth wall just upstream of the first roughness element. It is observed that downstream of the start of the roughness, the mean velocity profiles inside the internal layer (i.e., that part of the boundary layer which has been affected by the new inner boundary condition) exhibit a linear trend when plotted in the form U versus y1/2. Remarkably, it is also found that a linear trend is exhibited by points in the “undisturbed” boundary layer outside the internal layer when plotted in the above manner, and that the slope in the undisturbed layer differs from that in the internal layer. The undisturbed layer slope appears to depend on conditions upstream of the roughness. It is suggested that the point of inter section of the two straight lines (the “knee” point) on the U versus y1/2 plot may be used to define the edge of the internal layer. Turbulence intensity distributions and spectra are presented from which it is deduced that the internal and external layer structures are largely independent and that stream-wise length scales in the internal layer over the rough wall are reduced significantly below those at the equivalent station over a smooth wall.

Publisher

ASME International

Subject

General Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3