Employing Adaptive Particle Swarm Optimization Algorithm for Parameter Estimation of an Exciter Machine

Author:

Darabi Ahmad,Alfi Alireza1,Kiumarsi Bahare,Modares Hamidreza2

Affiliation:

1. Faculty of Electrical and Robotic Engineering, Shahrood University of Technology, Shahrood 36199-95161, Iran

2. Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran

Abstract

Winding inductances of an exciter machine of brushless generator normally consist of nonsinusoidal terms versus rotor position angle, so evaluations of the inductances necessitate detailed modeling and complicated parameter identification procedures. In this paper, an adaptive particle swarm optimization (APSO), which is a novel heuristic computation technique, is proposed to identify parameters of an exciter machine. The proposed approach evaluates the model parameters just knowing the main field impedance, measured exciter field voltage and current. APSO is employed to solve the optimization problem of minimizing the difference between output quantities (exciter field current) of the model and real systems. Two modifications are incorporated into the conventional particle swarm optimization (PSO) scheme that prevents local convergence and provides excellent quality of final result. Performance of the proposed APSO is compared with those of the real-coded genetic algorithm (GA) and PSO with linearly decreasing inertia weight (LDW-PSO), in terms of the parameter accuracy and convergence speed. Simulation results illustrated in the paper show that the proposed APSO is more successful in comparison with LDW-PSO and GA.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference23 articles.

1. Finite-Element Time-Step Coupled Generator, Load, AVR and Brushless Exciter Modelling;Darabi;IEEE Trans. Energy Convers.

2. Brushless Exciter Modeling For Small Salient Pole Alternators Using Finite Elements;Darabi;IEEE Trans. Energy Convers.

3. Genetic Algorithm-Based Parameter Identification of a Hysteretic Brushless Exciter Model;Aliprantis;IEEE Trans. Energy Convers.

4. IEEE Std. 115, 1995, “Test Procedures for Synchronous Machines.”

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3